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Abstract

Many techniques in artificial intelligence operate on
discrete models, wherein each variable of a system
description may take on only a finite number of

discrete values. These discrete models are easy to

acquire, they have computational advantages, and

there are many well-developed algorithms for

manipulating them. In contrast, the world presents us

with many continuous processes we would like to

simulate, identify or control. Many discrete techniques

from AI are regularly applied to discrete abstractions

of continuous processes. This of course is not always

possible. It's therefore important to consider whether

one's continuous problem lends itself to being

abstracted and solved as a discrete problem. We

describe a set of modeling technique and algorithms

for discrete, model-based diagnosis and control, in a

manner we hope will be accessible to those outside the

field. We then present a continuous problem in the

domain of spacecraft state identification and control

for which a discrete abstraction of the problem allows

us to perform useful diagnosis and reconfiguration.

We then present a seemingly similar problem for

which developing a discrete abstraction was quite
difficult and which did not result in as useful a

diagnosis and control system. We contrast the two

systems, and describe some of the problems that made

the second problem far less suitable for use with a

discrete model and discrete reasoning algorithms.

1 Introduction

Suppose we would like to create algorithms that

perform computations about a physical system such as

a spacecraft in order to perform tasks such as
diagnosing its current condition, simulating its future

operation, or planning a set of control inputs to move

the system to a desired condition. In order to use

such algorithms, we will require a model or formal

description of the physical system. A continuous

model includes real-valued attributes that may take on
an infinite number of values and continuous functions

that Compute the value of one attribute from another.

Change is modeled as the derivative of one or more

attributes over time. For example, a model of heating

and cooling of a spacecraft might include continuous

variables that represent the energy radiated from the

spacecraft into space and the energy output of its

heaters, and a set of differential equations that model

thermal conductivity through the spacecraft's

structure. When we begin to model complete systems,

we may often find that the physical behavior of the

system is continuous, but that a controller with

discrete states controls it. A hybrid model includes
both discrete states and continuous variables. A

hybrid model can discretely transition from one state

to another, and within each state can evolve

continuously through a set of differential equations.

Consider the following example.

Figure 1 Simplified Continuous Thermostat

Conceptually, Figurel illustrates a hybrid model of a

simple thermostatic heating system. The variable T

represents the current temperature of the system, while
T _ represents the derivative of the temperature with

respect to time. R represents the thermal properties of

the system being heated, for example its thermal

conductance. When in the Cooling state, the

controller turns the heater off, and the temperature

falls according to some continuous fimctionf. When

the temperature falls below a low set point, the
thermostat controller makes a discrete transition to the

Heating state. In this state, the controller turns the



heateron, and the temperature rises according to some

continuous function g. Such a model would help us to

simulate the temperature of the system given the set

points and the parameter R, would be useful in

diagnosing whether the heater was operating properly,
and so on.

While much of the world is hybrid, a significant

amount of work in artificial intelligence concerns

discrete models. In contrast to a continuous model,

each attribute of a discrete model may take on only a

finite number of discrete values. Thus, there is only a

finite (though possibly very large) set of states the

discrete model can attain. Using a discrete model has

computational advantages, and a wide range of

discrete modeling formalisms and algorithms have

been developed or applied by the AI community.

Examples of techniques that apply to discrete models

include STRIPS-style planning and many of its

extensions (see Boutilier, Dean & Hanks, 1995 for an

overview), partially observable Markov decision

processes (see Kaelbling, Littman & Cassandra), some

of the work in model-based diagnosis (see Hamscher,

Console & deKleer 1992 for an overview), and

anything that makes use of a propositional logic

encoding.

Fortunately, we can often capture the features of our

hybrid system that are relevant to a particular task

(e.g., planning, diagnosis, simulation or so on) in a

discrete abstraction. That is, we can abstract an

infinite number of hybrid behaviors into a finite

number of discrete behaviors. For example, to

determine whether or not the thermostat of Figure 1 is

functioning correctly, it may be sufficient to create the

discrete model illustrated in Figure 2. When the

temperature level drops below a set point, the system

enters the discrete heating state, wherein the heater

must be on and the temperature must be rising. Any

continuous behavior that fits this discrete description

is normat behavior, and any that does not indicates a

failure.

T>< Low Set Point_

High Set p_

Ira discrete abstraction such as this provides sufficient

information for the task at hand, then we may then

apply our discrete techniques. Discrete abstractions

are regularly applied in AI with great success.

Examples of their use are too numerous to enumerate,

but they include robot navigation (for example,

Nourbakhsh, Powers & Birchfield, 1996), and

spacecraft diagnosis and control (for example,

Williams & Nayak, 1996).

The issue is then, when is a discrete abstraction

sufficient, when is it insufficient, and how does one

determine this before investing time writing a discrete

model. We have spent the last few years applying

discrete diagnosis and control systems to a variety of

domains (Bernard, et al, 1998; Kurien, Nayak &

Williams, 1998). In the following sections of the

paper, we first describe a typical application to which

we have applied discrete diagnosis and control

techniques. We then give an intuition of how one

particular discrete diagnosis and control system, called

Livingstone (Williams & Nayak, 1996; Kurien &

Nayak, 2000) operates and provide some intuitions on

why it works well on the typical application. We then

describe a domain that appears to be similar where

discrete abstractions worked rather poorly. We then

describe the types of problems that separate the two

domains, and what capabilities a hybrid diagnosis and

control system needs to have to address the more

complex domain.

3 The Propulsion System Application
Figure 3 illustrates the redundant propulsion system

used in the Cassini spacecraft, designed to last a seven

year cruise to Saturn and autonomously insert itself

into orbit around Saturn. The purpose of the system is

to provide the appropriate amount of acceleration by

combining fuel and an oxidizer in an engine for a

specified amount of time. The helium tank is filled

with helium under high pressure. Conceptually,

controlling the system is straightforward. When the

appropriate valves are opened, the high pressure in the

helium tank pressurizes the oxidizer and fuel tanks.

This forces oxygen and fuel into the engine where it is

ignited to produce thrust. When sufficient thrust is

achieved, the valves are closed.

Figure 2 Qualitative Thermostat Model
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Figure 3- Engine Schematic

In actuality, the control problem is complicated by the

redundancy needed to ensure success on a long

mission. Two engines are provided in the case that one

fails. Each engine is supplied with fuel and oxidizer
through a complex arrangement of valves. Valves or

pipe branches in parallel ensure that if valves stick

closed, a redundant parallel valve can be used to allow
fluid flow. Valves in series ensure that if valves stick

open, an upstream valve can be closed to prevent fluid
flow. Not shown are valve drivers that control the

latch valves and a set of flow, pressure and

acceleration sensors that provide partial observability

of the system. There are approximately 10 is possible

configurations of the system including failures.
Several hundred of those configurations produce

thrust, depending upon which valves are open or

closed. Given a set of failures, thrust configurations

that can be reached without using a pyro valve are

preferred, as pyro valves can only be opened or closed

once. Regardless of the number of failures that occur,

we'd like the control system to determine the current

configuration of the propulsion system and find the

best viable configuration of the system that will

produce thrust.

Though this system is relatively complex, using only a
discrete model we can answer the question of which

valves are stuck open or closed and what actions
should be taken to create a route for fuel and oxidizer

to a working engine. The next section describes how

this is accomplished.

2 Discrete Diagnosis & Control
Our discrete model of a hardware system must specify

the components of the system (e.g. there are three

tanks, twenty-eight valves, and assorted other parts).

For each component, the model must specify the

possible states, referred to as modes, the component

may occupy (e.g. a valve may be open, closed, stuck

open, or stuck closed). For each mode, the model

must specify the component's behavior (e.g. a closed

valve prevents flow). We must also specify the
transitions. A transition moves the model from one

mode to another when some condition on the

attributes of the current mode is true. If our system is

not deterministic, we can allow multiple transitions on

the same condition, and assign a probability to the

occurrence of each transition (e.g. when commanded

open, a closed valve usually opens but may stick

closed with some probability p). All of this

information can be encoded using an automaton to

represent each component. For example, a valve

might be represented as shown in Figure 4.

The ovals in Figure 4 represent tile possible modes of

the valve, open, closed, stuck open and stuck closed.

Each mode includes a partial description of how the

valve behaves in that mode. For example, when the

valve is in the closed mode, the flow through the valve

is zero. The arcs specify how the mode changes when

an action is taken. Starting in the closed mode, when

the command to open is given, the most likely

outcome is that the valve moves to the open mode via

the darker arc. The lighter arcs represent less likely

failure transitions to the stuck open or stuck closed

mode that may occur.

_4_qnmnnt _d_

Figure 4 - Valve Automaton

Using a single component, we can develop a basic
intuition for how a discrete control algorithm might

work. For the sake of simplicity, the algorithm is

broken down into a method for estimating the state of

the system given the sensors and a method for

determining the best action to take given the state

estimate. Suppose we know a valve to be in the

closed mode, and we issue the command to open the
valve. We then receive an observation ofthc flow and

pressure, and wish to determine the new state of the

valve. Suppose the flow reported by the sensor is zero

and the pressure is high. We investigate each possible
transition from the closed mode in turn. If the valve

took the likely transition to the open mode, the flow

through the valve would be proportional to the

pressure. It is not, so this transition, although likely, is

ruled out. Similarly, the less likely transition to the

stuck open mode is ruled out by the observations. The

only transition consistent with the observations is the



stuckclosedmode,andthisbecomesourstate
estimate.Thebasicintuitionis that diagnosis is a

search over the transitions of the hardware model to

find a mode that is consistent with the observations.

Choice of a control action is accomplished in a similar

manner. Suppose we again know the valve to be in the

closed mode. We wish to have flow through the
valve. We first check to see if the current mode

allows flow. It does not, so we must find a path to a

mode that does. We cannot use any of the arcs to

failure modes in our path, as we cannot force failures

to occur. Instead, we must use only the commandable

(darker) arcs. In this case, there is only one arc from

the closed mode to the open mode. Fortunately, in the

open mode there must be flow and our search ends.
The basic intuition is that action selection is a search

over the transitions of the hardware model to find a

mode that enforces the desired conditions.

The search for a diagnosis or control action naturally

extends to multiple components. Consider the

simplified propulsion system of Figure 5. Consider
the case where we have commanded all three valves

Vl, V2 and V3 to open. From the interconnections of

the components, we can automatically infer that the

pressure in the He tank is pressurizing the input of V3.

From the valve model, we can predict there is a

pressure and flow through V3. Similarly, we predict

that the 02 and fuel tanks are pressurized, and there is

a flow of 02 and fuel to the engine through VI and

V2. From the engine model, we predict acceleration

given the flow of oxidizer and fuel. If no acceleration

is measured, the assumption that the system is

operating properly is inconsistent, and a search for a

consistent set of mode transitions is required.

Conceptually, this is a search over all of the

components to find a set of failures that are consistent

with the current observations.

Figure 5 A Simplified Propulsion System

In practice, considering every possible combination of
component failures would be expensive and

unnecessary. Using observations, we can quickly
focus the search to the relevant components. For

example, a flow at VI was previously predicted
because of the assumed states of VI, the 02 tank, V3

and the He tank. If we measure no flow at VI, then at

least one of these components must have suffered a

failure. Similarly, if we measure a pressure at V2,
then it is inconsistent to believe the He tank is

ruptured or V3 is stuck closed. Thus with two
observations we have focused our search for a

diagnosis on V I and the O2 tank. We may then

consider possible failures of V I or the tank in turn,
and check if the model of each failure mode is

consistent with the observations. In larger systems,

the focusing effect of observations can be even

greater. For example, in the propulsion system of
Figure 3, observation of pressure at the oxidizer tank

removes all fourteen components to the right of the

observation from consideration in the diagnosis. For a

more detailed account of these techniques, please see

(Williams & Nayak, 1996; Kurien & Nayak, 2000).

We have successfully applied these discrete diagnosis

and control techniques to a number of domains.

Models of the propulsion systems of the Cassini

spacecraft (Pell, et al, 1996) and X-34 vehicle as well

as subsystems of the X-37 spacecraft have been

developed and tested in simulation. A model of the

reaction control, power and other systems of the Deep

Space 1 spacecraft was tested in flight (Bernard, et al,

1998). In the next section, we describe a seemingly

similar domain in which our attempts to apply discrete

diagnosis and control techniques were not as

straightforward.

4 Reverse Water Gas Shift

In-Situ Resource Utilization has beeome a key

component of NASA's plans for Mars exploration.

Major cost savings are possible when propellants and
other consumables are manufactured on Mars instead

of being imported from earth. The reverse water gas

shift reaction (RWGS) is a chemical reaction that

produces oxygen (O2) from the atmosphere of Mars,

which is mostly carbon dioxide (CO2).

Figure 7 - RWGS Plant on Mars

The RWGS reaction occurs when CO2 is combined

with hydrogen (H2) as shown in Equation 1. The water

produced is electrolyzed (Equation 2) the oxygen from



electrolysisisstored,andtheH2isrecirculatedinto
theinputstream(seeFigure7).
Equation1
CO2+H2= CO + H20

Equation 2

2H:O + 4e" = 2H2 + O2

Equation 3

CO = minimum(H2,CO2 )

Since all the H2 is reused, only a small amount needs
to be imported from earth. The net result of the

RWGS plant is to produce as much 02 as needed for
propellant or life support using only CO2 from the

Martian atmosphere as a raw material.

As a byproduct of the reaction of Equation 1, The
RWGS reactor vents carbon monoxide (CO). When
two reactants are supplied in the correct ratio both are

completely converted into products with no excess of
either left over. If the molar ratio of feed gases in
RWGS is not exactly 1:1, excess H2 or CO2 will also

vent. Equation 3 expresses this constraint. The
control challenge is to supply CO2 and H2 to the

reactor in exactly the right amounts to maximize

production and avoid wasting either gas - particularly
H2 that is relatively scarce on Mars. Among other

things, the plant control system must monitor the vent

stream, detect if either feed gas is in excess and adjust

flows to continue efficient operation. RWGS must

operate for several years on Mars without human

intervention, so its control system must be

autonomous and highly reliable. One of the most

common fault modes for process equipment in harsh

environments is instrumentation failure. One or more

measurements may prove defective over the operating

lifetime of the system. However, given the remaining

sensors and knowledge of the RWGS process, it is

possible for a control system to continue producing O2

without intervention from ground controllers. The

control system must infer the missing instrumentation

data and correctly select control actions.

The RWGS plant can be viewed as a constraint

network (see Figure 9 below). There are eleven

parameters constrained by four real-valued functions

(FI, F2, F3 & F4). Five of the parameters are

monitored by measurements from the plant, and two

others are commands used to control the system. The

constraint network of Figure 9 may be used for both

automated diagnosis and control. Conceptually, this

could be accomplished in a manner similar to that

described in the previous section. To perform

diagnosis, when one or more measurements from the

plant is inconsistent with values predicted by the

constraint network, we could attempt to isolate the

fault by suspending one constraint at a time and

calculating a value for it using the others. If the new

value can be computed consistently, the suspended

constraint is a valid fault suspect. To perform

reconfiguration or more general control, we could

express an operating goal as a set of constraints and

attempt to invert the constraint network to calculate

the commands that will satisfy it. We attempted to

build a discrete, qualitative model of the RWGS

constraint network to do exactly this.

[CO2 feed rate[ [Vent flow rate]

f nowratcI [® .........

Figure 9 - Constraint network for RWGS

In order to produce a qualitative model of a

continuous system, we must discretize the variables

and constraints that model the system's behavior. In

the thermostat example, we discretized a continuous

model of the temperature change over time into a

discrete model specifying whether the derivative of

the temperature was positive or negative. In order to

diagnose the reaction control system of Deep Space 1,
we discretized the measured error between the desired

and actual orientation of the spacecraft in three

dimensions into three variables that captured whether

the deviation on each axis was positive, negative or

approximately zero. For each of these discretizations,

we would write a small piece of software, referred to
as a monitor, to convert from the real-valued sensor

reading into the appropriate discrete category.

In order to develop a qualitative model of the RWGS

system, we first characterized continuous variables

such as electrolyzer current and H2 flow rate as "low,

expected or high". This allowed us to start writing



discreteconstraints,for examplerelatingthe
qualitativeflowrateofH2andCO2tothequalitative
rateofH20production.Intuitively,if theH2inputto
thereactionislower than expected, then the H20 will

be low as well. It soon became clear this qualitative

abstraction of the system was inadequate. Often, a

"low" value was the expected value. For example, if

we intentionally turn a valve off, for example in a

redundant, unused branch of the system, then the

expected flow rate in the branch is zero. The sensed

value zero thus corresponds the qualitative value

"expected". However, if the H20 output of the

reactor is zero, the qualitative value is "low". We

addressed this problem by quantifying flows using

both the "low, expected, high" discretization and a

"zero, positive" discretization and augmenting our

valve, flow controller and other models to correctly

predict one or both types of value. This significantly

complicated the model. Unfortunately, this still was

not adequate to correctly diagnose the relevant
failures.

Consider the case where the current to the electrolyzer

is reduced by the RWGS controller. By function F I

of the constraint diagram, the H2 feed rate will be

correspondingly reduced according to some

contimlous function. However, this is as expected.

That is to say, we do not need to diagnose a failure to

explain the reduced rate. In order to accommodate

this in a qualitative model that cannot perform

continuous calculations, it became necessary to

compute such relationships between variables outside

of the model. This made it possible to relate

"expected" electrolyzer current to "expected" H2 flow

by a continuous function. Whatever operating level

was required for the electrolyzer, the external function

would compute the "expected" expected H2 flow that

could be compared to the observed values in order to

report "low, expected or high". We could then

perform a system-wide, discrete diagnosis. This

arrangement is awkward and requires maintenance of

separate auxiliary code. Other variables in RWGS

required comparisons between two or more

quantitative values; these relationships were almost

impossible to model qualitatively. In particular, the

reactor function F2 is a comparison between two real-

valued parameters, H2 flow and CO2 flow (Equation 3)

that we could not adequately capture within the
discrete model.

In retrospect, the Cassini propulsion system model is

something of a special case. At the level of detail to

which it was modeled, it consists of a pressurized tank
at one end and vacuum at the other. The control flow

and pressure gradient in this system are always in one

direction. There are no closed loops or mixing of

flows. The diagnosis problem was only concerned

with abrupt failures such as stuck valves, and did not

attempt to capture leaks, flow reversions, or more

subtle flow anomalies. No diagnosis required

observing the system over time. Thus, we could

perform our diagnosis using only a context-free

discretization of the observations (e.g., flow, no flow).

Similarly, the control problem was defined to only

concern discrete actions such as opening and closing

valves. There was no need to estimate and adjust

continuous parameters of the system such as flow

rates. In such domains, a discrete, qualitative model is

often effective. In these cases, the ease of modeling

and computational efficiency of a discrete, qualitative
model are attractive.

In contrast, the RWGS system and many other

problems involve branching or multi-directional
propagation of fluid flows, electrical current or similar

quantities, and capacitance, such as storage tanks or

buffers, that evolves over time. Often it is extremely

difficult to produce a discrete abstraction of such a

domain that is both consistent with respect to

diagnosis and relevant with respect to control. In the

following section we provide some intuitions from the
RWGS domain on where the trouble arises.

5 Issues with Continuous Variables

Consider again the complete constraint network for

RWGS (Fignre 9). Such a constraint network

provides many opportunities to exploit analytical
redundancy in the system measurements, and we

would like to use it to devise an RWGS control system

that is extremely robust and fault-tolerant. There are

many other spacecraft systems that are characterized

by multiple quantitative constraints in complex

relationships. Below we discuss diagnosis and control

problems on this network that we were unable to

adequately address using a discrete model because of

complex interactions of the cofitinuous variables. For

each we create a table illustrating the relevant
continuous constraints that were involved, and the

nature of the constraint satisfaction we were unable to

perform in the discrete abstraction.

Sensor Fault Example

Table 1 uses analytic redundancy to find a sensor

failure. The columns of the table correspond to the

continuous variables of the RWGS system. The rows

correspond to the operation of constraints to tilt in

variable values. The first row specifies the constraints

themselves. For clarity, only the constraints associated

with the electrolyzer (function FI) are shown.



Table 1 - Diagnosing faulty H2 measurement

Row Electrolyzer He

Current gMol/h

_ a_ms_L_._ r
1:I

!2 115

3U- 8

5 15

H20 Oz

cc/min gMol/ht

1"0.10 1"0.17

1.5 2.55

1.5 3.55
1.5 2.55

Function F 1

_Predicted

-- 'Suspend arnps

1.5 12.55 iSuspend H2

S_ _4_5 Discre anc :

Row 1 Functions for constraint calculations

Row 2 - Assuming the electrolyzer current reading of

15 amps is correct, the constraint network predicts H2

flow of 4.95 gram Moles per hour. The observed H2

flow (Row 3) is 8. Thus either the current

measurement or flow measurement is faulty.

Row 4 - Suspending the current measurement, we
invert the formula FI in Row 1 and calculate current

from H2 (8/0.33=24 amps) H20 (1.5/0.1=15 amps) and

02 (2.55/0.17=15 amps). Failure of the current

measurement alone is not a consistent diagnosis.

Row 5 Suspending the H2 constraint we calculate

4.95 for H2 from electrolyzer current, H20 and 02.

These results are consistent. Failure of the H2
measurement alone is consistent.

Control Examples
Table 3 is an example illustrating control. Suppose

the goal for electro]yzer operation is 02 flow of 2.0

gram moles per hour.

Table 3 - Controlling 02 flow

Electrolyzer H2 H20 (3 i l
Current gMol/hr cc/min gMol/hr

amps O_1 I 1"0.33 I*O.lO I*

2 ? ? ? 2 PGoal for O !
3 1.76 2 0 ]Calcamps I

4 11.76 3.9 1.2 2 ^"------"t_=-_._o"_-_-ers

Row 3 - Inverting FI, we can calculate the

electrolyzer current that will yield the desired flow

(2.0/0.17 = 11.76 amps).

Row 4 - Using the value for current we can calculate

expected values for H2 and 1-120.

The electrical circuit (Figure 10) provides another

example of a system that depends on comparison

between two quantitative constraints. Currents I1 and

I2 depend on the resistance of R1 and R2 plus the

other circuit components.

ix=ii+12VI = 3 - 5* IT __ __
11 = V1/R1 -- --

12 = VI/R2

Figure I 0 - Resistor Problem

Table 4 illustrates a control problem for this circuit.

The goal is to equalize current through both resistors

at 0.18 amps each. Simply increasing resistance R1 to

reduce its current won't work; that would produce
excess current in R2. Both resistors have to be

adjusted to achieve the goal.

Table 4 - Resistor Problem Constraint Solution

V1 RI IR2 II 12

volts ohms ohms amps amps

5"Ir3 RI IR2 R1VI R2VI Function

2 0.35 1.00 2.00 0.35 0.18 lnitial cond

3 9 q .9 0.18 0.18 Goals

1.2 6.7 "!Calculate VI1

5 1.2 6.7 iCalculate R

5 1.2 6.7 [Calculate R2

7 1.2 6.7 0.18 0.18 iFinalcond

Row 2 - Initially, 11=0.35 amps and 12=0.18 amps

ROW 4 - To see if the goal is possible, we first must

calculate VI. From the first constraint in Figure 10

we know that IT = II+12 (0.18 _- 0.18 = 0.36 amps)

The constraint in Row I gives us V1 = 3 - 5* lz

(3 - 5*0.36 = 1.2 volts)
Row 5&6 - Invert the function for I1 and solve for Rt

=R2 = VI/II (1.2/0.18 = 6.7 ohms)

Row 7 - Final conditions meet the control goal.

More Complex Diagnosis and Control
Figure 11 illustrates a quantitative model

characteristic of life support and various industrial

systems. A fluid is flowing through a duct. The flow

rate is controlled by a butterfly valve V and measured

by a flow meter F. Temperature of the fluid is

controlled by the heater Q and measured by

temperature sensors T I and T,. This system can be

analyzed very well with a constraint network and can

be quite robust even when some of the sensors fail.



Figure 11 - Fluid Flow in a Duct

Consider the failure of flow meter F that is analyzed
in Table 5. In this example the fluid is water. The

equation at the top of Figure 11 expresses the
relationship between mass flow m, heat Q and
temperatures 7"1and 7"2. C is the heat capacity of water

a constant equal to 1.0 cal/g. For clarity we can

assume that the mass flow m is equal to the flow

command F. By suspending constraints in rows 4-7

we diagnose that the flow measurement F is faulty and
should be 30 instead of 2.

Table 5 - Duct Flow Meter Failure

Tl F Q Te

°C g/hr cal °C

I 7'i m Q Q

mC

2 25 30 300 35

3 25 1

5 i2s
6 25 2

7 25 2

Function
--+T,

Predicted

300 35 Observed

300 35 Suspend Tz

300 35 Suspend t7

_/3® 35 SuspendQ
300 _!7_ii= SuspendT2

Once the flow meter is known to be faulty we can still

control the duct flow by reference to the remaining

measurements. (Refer to Table 6). If we want mass

flow m of 40 g/hr while at the same time maintaining

35"(7 for Te , we can set flow control to 40 without
reference to the flow measurement and calculate a

new value for Q. The proper flow and heater settings

are confirmed by observing the rest of the

measurements.

Table 6 - Duct Control with Degraded Sensors

7"1 _/hr Q "1"2 t

°C cal °C

TI m Q Q + Tt Function
mC

? ? 35 Goal for 7'2 [
_, _ Calculate F

25 _ 400 35 Calculate Q I

_!,_i IObserve d ]5 25 _ 400 35

The usefulness of quantitative constraints is more

apparent when the principles illustrated by the

electrical circuit and fluid flow examples are

combined. Figure 12 shows two ducts connected to a

common manifold. Since m0 = m_+m2 if we attempt

to increase flow by opening VI, mt will increase; but

me will decrease at the same time. The

interconnected nature of the constraints makes for a

complicated network, but there is a significant

advantage in flexibility for diagnosis and control. For

example, the temperature measurements may be used
to confirm that duct flows are correct even if flow

measurements become defective as in Table 5. Flow

measurements may likewise stand in for faulty

temperature sensors. Under some circumstances, it is

possible to adjust flow in one duct if its control valve

is inoperative by tweaking the valve in the other duct.

Only if we have a model of the continuous behavior of

the system will we be able to create this level of

flexibility and fault tolerance.

,_mz

1

Figure 12 - Two-Duct Flow

Time-related Problems

A further example from RWGS (Figure 13) illustrates

another class of problems that is difficult to manage

using a discrete model. In this case, the issue is the

discrete, non-metric model of time. Suppose we wish

to fill the tank. Knowing the initial water level in the

tank LLo it is possible to predict what the liquid level

measurement will read at some arbitrary time t. With

a predicted level, one can continuously monitor the

system and diagnose a faulty level sensor LL , flow

meter F or broken pump as soon as the measured level

deviates from the prediction. With a discrete time and

discrete state model, one simply cannot represent the

evolution of the water level over time. Our experience



hasbeenthismakesrepresentationof systemswith
capacitanceofanykindverydifficulttorepresent.

@

..........

LL, = LL o - fo Fdt

Figure 13 - Tank Level Problem

6 Conclusions

We have provided a succinct conceptual introduction

to hybrid, continuous and discrete systems and
explored the primary concepts behind model-based,
discrete diagnosis and control in a manner we hope is

accessible to those outside the field. We have found

that discrete models, in particular for model-based

diagnosis and control, can be quite attractive. For

appropriate domains, they are intuitive, simple to
encode, and computationally tractable. We have given
an example of a domain where discrete models and

techniques were quite useful, and attempted to
characterize it. In particular, a discrete abstraction is
useful where the abstraction of each variable from a
continuous-valued variable to a discrete variable can

be performed independent of other variables and the

particular configuration of the system being modeled.
In addition, there are many applications that require
hybrid models with both discrete and continuous
components. We have provided an example of such a

domain, and attempted to illustrate some of its
characteristics. In particular, hybrid models are
essential where the physical system is characterized by

continuous variables whose discrete characterization is

dependent upon some context, that are summed or
multiplied, that branch in multiple directions or that

are compared to each other. Our experience with the
RWGS system suggests that making use of a hybrid

representation would present many opportunities to

build systems that are very robust and fault-tolerant-
able to operate with missing information and helping

solve control problems that will enable future

planetary exploration.
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